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The vorticity transport equation is solved for radial incompressible flow between 
disks by a finite-difference method with discretization based on the method of Allen & 
Southwell. The solution permits detailed characterization of the flow for the Reynolds 
number range investigated, 1 6 Re 6 300. Above Re = 60 separation is observed with 
the bubble size increasing rapidly with Re. The streamwise and transverse pressure 
and velocity gradients are examined to interpret the observed phenomena. 

1. Introduction 
Description of radial source flow between parallel disks, a problem with practical 

applications to centrifugal compressor diffusers and hydrostatic air bearings, has 
received considerable attention in the literature. The problem is of some intrinsic 
interest. For viscous flow the radial pressure distribution decreases logarithmically 
downstream whereas for ideal flow it is predicted to increase radially. In practice 
negative pressure gradients are usually found at small radii, changing to positive 
gradients further out. In  the presence of wall friction the markedly adverse pressure 
gradient is sufficient, above a certain critical Reynolds number, to produce separation 
and reverse flow with reattachment further downstream. Turbulent flows may undergo 
a reverse transition to laminar flow, a phenomenon first not'ed by Kreith, Doughman 
& Kozlowski (1963). 

Earlier approximate solutions of the problem by Osterle, Chou & Saibel (1957), 
Woolard (1957), Livesey (1960) and Moller (1963) were based on the KBrmBn 
momentum-integral method. As pointed out by Bird, St'ewart & Lightfoot (1962, 
p. 114), however, the assumption of a fixed velocity profile leads to an inconsistency 
which may be significant (Savage 1964). 

More recently Hunt & Torbe (1962), Jackson & Symmons (1 965) and Savage (1964) 
used power-series expansions in the Navier-Stokes equations to solve for the velocity 
or pressure distributions with rather similar results. The co-ordinate expansion for 
the stream function used by Savage (1964) gave pressure distributions in good 
agreement, except at  small radii, with the experimental results of Moller (1961). As 
pointed out by Wilson (1  972) however, Savage's (1  964) expansion does not apply in 
the region of small r (i.e. r = O(Re4)) and increasing the number of terms would give 
a worse prediction. In the region where inertia terms are important and the flow is 
shaped by inlet conditions the expansion would be invalid since the terms were 
evaluated with boundary conditions along the plate surface and plane of symmetry 
only. The agreement between theory and experiment was regarded as fortuitous 
(Wilson 1972). 
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Ishizawa (1965, 1966) in an extensive analysis combined a series expansion method 
for the inlet region with a momentum-integral method for the downstream region. 
He predicted no separation below Re = 100, a result contrary to that found in the 
present study. His separation point (rs = 1.770) for Re = 100 was close to that found 
in the present work (rs = 1.794) but the double vortex at  Re = 200 found by Ishizawa 
was not confirmed here. Wilson (1972) points out that Ishizawa’s analysis is based 
ultimately on the Schlichting (1934) model, which is considered incorrect through its 
failure to take into account the displacement effects of the boundary layers on the 
uniformity of the inviscid core. Further analyses of radial source flow were presented 
by Wilson (1971, 1972)) who examined the influence of different entry conditions but 
found the problem to be mathematically intractable. Higgins (1 976) formulated the 
radial source flow as a parameter perturbation problem to be analysed in the limit of 
high Reynolds numbers and suggested that difficulties of indeterminacy in earlier 
studies arose from attempts to match a co-ordinate expansion with a parameter 
expansion. The error in neglecting the third term of Savage’s (1964) expansion was 
indicated to be O(Rei/r2)2 and not O(Re/r2)2 as suggested by Wilson (1972). The 
critical Reynolds number for separation found by Higgins, Re 2 60, is in essential 
agreement with the result of the more rigorous present study. 

The series expansion for the stream function used by Patrat (1975) gave pressure 
distributions in good agreement with experimental values (Re > 12000) except 
at  small radii. The disagreement at  small radii is to be expected since no initial 
(upstream) conditions were applied. 

In the present study the author presents results obtained from a finite-difference 
solution of the full Navier-Stokes equations with a discretization procedure based on 
the method of Allen & Southwell (1955). In accordance with expectation the latter 
procedure conferred remarkable stability on the computations and permitted the use 
of over-relaxation to accelerate convergence. The solution was obtained in the form 
of stream-function and vorticity distributions, from which velocity and pressure 
distributions may readily be calculated. Our results indicated that for Re < 60 there 
is no separation, that the separation point moves upstream with increasing Re and 
that the length of the separation bubble increases rapid!y with Re. The absence of 
separation for Re 6 60 is surprising in view of the still strongly adverse pressure 
gradient along the wall but can be interpreted by examining the transverse pressure 
gradient, which attains a substantial magnitude in the region near the wall at low 
Reynolds number. Computation of transverse velocity and pressure distributions 
defined the region in which boundary-layer simplifications are invalid. 

2. The governing equations 

governing equst,ion in terms of the stream function @ is 
For radial axisymmetric flow of a constant-property fluid between large disks the 

The variables in the above equation have been rendered dimensionless through the 
transformations -_ - 

r = FIE ,  Z = Z/A, $ = 4nh$/Q. 
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The barred quantities are dimensional. The Reynolds number is defined as Re = Q / 4 d  
with a the volumetric flow rate and 2h the gap between the plates, which lie in the 
planes Z = f h. 

- 

Introducing the vorticity 

(2.1) becomes 
(2.3) 

To reduce the region of computation the transformation 

7 = l - l / r  (2.4) 

was used. This compresses the scale in terms of the radial co-ordinate r a t  large values 
of r,  a region where gradients are mild. Equations (2.2) and (2.3) become 

The above equations may be formulated alternatively in terms of 4' = @r by noting 
that in general $ and the streamwise velocity U are proportional to r-l .  Both $' and 
$ satisfy the continuity equation but only lines of constant $' are tangential to the 
vector velocity. The stream-function plots shown later are for $' since the latter is 
physically more meaningful. 

3. Boundary conditions 
Equations (2.5) and (2.6) were solved for two different inlet conditions. For case I 

uniform approach flow with zero vorticity at, the plate entrance (Y = 1 )  was assumed, 
giving 

For case I1 the physically more realistic model of flow towards an infinite cascade of 
parallel plates (Wilson 1971) was assumed with uniform irrotational flow at  some 
plane Y = ro (7 = yo) upstream from the entrance, i.e. 

(3.1) r = o ,  w = o ,  $ = Z .  

q = yo, w = 0, $ = Z / r o  = Z( l  - q 0 ) .  (3.2) 

It should be noted that (3.2) permits diffusion of vorticity upstream from the entrance 
to  the plates. Values of ro sufficiently small to permit unrestricted vorticity diffusion 
are easily found by examining vorticity distributions obtained in the solut,ions for 
t,he region ro < r < 1 .  I n  practice ro 2 0.667 was found satisfactory for all Reynolds 
numbers greater than unity studied. 

At large distances downstream the flow assumes the fully developed parabolic 
profile for all Re: 

7 = T m ,  W = - ~ Z ( I - ~ ) ,  $ = ~ ( i - ~ ) ( z - p 3 ) .  (3.3) 
14-2 
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Along the plane of symmetry between the plates, 

@ = O = w  on Z = O .  

Along the solid surface (for 7 2 0) the no-slip condition is enforced, with 
( 3 . 4 )  

w =V2@,  @ =  (1-7) on 2 = 1. (3.5a, b )  

The surface vorticity is unknown but is evaluated from interior values of @ and w 
after each iteration using a finite-difference form of ( 3 . 6 a ) .  This is developed in the 
appendix using a modification of Wood’s (1 954) method. 

For case 11, @ and w must further be specified in the fluid plane Z = 1 ahead of the 
solid surface. From symmetry considerations, 

w = O ,  @ = l - y  on Z = i ,  v o < q < O .  (3.6) 

4. Discretization and numerical solution 
Successful numerical solutions were obtained using several different discretization 

and co-ordinate transformation schemes. These included using 
(a)  central differences for all derivatives with the governing equations in terms of 

Z and r ,  
( b )  central differences for all derivatives and transformed co-ordinates according 

t o 2  = i-( l-x)Zandy = l - l / r ,  
(c) Allen & Southwell’s (1955) ‘latent exponentials’ discretization scheme for (2.5) 

and central differences for the derivatives in (2.6). 
With both scheme (a)  and scheme ( b )  above stability problems were encountered 

at the higher Reynolds numbers, necessitating the use of very small relaxation factors 
(see (4.1) below) and leading to long computation times. Transformation of the Z 
co-ordinate in scheme (b)  was attractive since a very fine Z spacing was produced 
near the solid surface (where vorticity gradients are steep) when fixed increments in 
x were taken. The excellent stability conferred on the computations by Allen & 
Southwell’s discretization scheme led to the adoption of scheme (c), i.e. (2.5) and 
(2.6) were solved subject to the boundary conditions given in (3 .3) - (3 .5)  together 
with equation (3.1) (scheme I) or (3.2) and (3.6) (scheme 11). In  their original paper 
Allen & Southwell (1955) presented no physical arguments to justify the approxima- 
tions used in the vorticity transport equation to derive a finite-difference algorithm 
for the vorticity. It is evident however that their method assumes in essence that the 
vorticity flux is constant over a small interval for either of the two co-ordinate 
directions. For the co-ordinate normal to a solid boundary, at  least, this is reasonable 
since the total vorticity transport is more nearly constant than that due to convection 
or diffusion alone. The method leads to an exponential representation of the vorticity 
(e.g. equation (A 4) in the appendix). This is a more flexible and perhaps more accurate 
form, particularly near a solid boundary, than the Taylor expansions on which con- 
ventional central-difference formulae are based. Details of the development are given 
in the appendix. 

The equations were solved by a point-iteration scheme employing Liebman’s 
procedure, with a suitable arbitrary initial distribution for @ and o. Convergence was 
accelerated by using relaxation factors, e.g. for the vorticity 

) ?  (4.1) @ n f l  =- “ n  + W(@n+l- 
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Re 

1 
1 

30 
30 
60 
60 
75 

100 
100 
200 
300 

Step sizes 

Inner and outer 
computational 

radii 

0.05 
0.061 
0.08125 
0.05 
0.08 
0.05 
0.05 
0-05 
0.0465 
0.0465 
0.05 

0.0667 
0.0667 
0.10 
0.0667 
0.10 
0.0667 
0.0667 
0.0667 
0.0667 
0.0667 
0.0667 

0.6667 
0,5577 
0.6375 
0.6667 
0.6410 
0.6667 
0.6667 
0.6667 
0.5444 
0.7289 
0.6667 

20.0 
41.67 
40.0 
20.0 
25.0 
20.0 
20.0 
20.0 
42.55 
42.55 
20.0 

-f Vorticity not fully converged. 

TABLE 1.  Computational parameters. 

Number of 
Number of iterations 

mesh for 
points convergence 

480 229 
480 244 
220 173 
480 334 
220 214 
480 450 
480 393 
480 467 
640 580 
480 700 
480 12007 

where W is the relaxation factor and n symbolizes the nth iteration. Since optimum 
numerical values for. W cannot be satisfactorily predicted the latter were found 
empirically by trial and error. The author's experience was similar to that of Wang 
& Longwell (1964), viz. that over-relaxation (e.g. W = 1.2) should be used in the 
initial stages followed by a reduction in W to a value less than unity (e.g. W = 0.8) 
as the iteration proceeds. The rate of convergence was primarily dependent on the 
value of W for the vorticity calculat'ion. 

5. Step size and convergence criterion 
Details of step sizes, inner and outer boundary locations ( rO , rm)  and the number 

of iterations required for convergence are given in table 1. Step sizes were chosen 
sufficiently small that a further reduction had a negligible influence on the computed 
results. The leading edge of the plate ( r  = 1,  2 = 1 )  is a discontinuity and there is 
some uncertainty about the computed quantities in the immediate vicinity of this 
point. The discontinuity could be removed by specifying the geometry and radius of 
curvature of the leading edge. This would increase considerably the complexity of the 
computational problem and does not seem worthwhile. 

Solutions were considered to have converged when at  all mesh points 

6. Computation of pressure and velocity distributions 
Streamwise and transverse velocities are readily computed from their respective 

u = agpz, (6.1) 
v = -a@/a,.-g/r = -(l-r/)za@/av?-g(l-r/). (6.2) 

definitions : 
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Plate leading edge 

Z 

0.50 

0 2.0 3.0 4.0 5.0 6.0 
r 

0 

Plate leading edge 

- 0.70 

0.50 

0.25 

c 

I I 1 I I I I I I O I  2 3 4 5 6 7 8 9 10 
r 

FIGURE 1. Streamline pattern for flow at (a) Re = 100 and ( b )  Re = 200. 

By integration of one component of the Navier-Stokes equations in cylindrical 
co-ordinates the following equation for the radial pressure distribution on the plane 
Z = 1 is obtained: 

For the region q 2 0 only the last term in (6.3) is non-zero. P is the dimensionless 
pressure coefficient p l ipU2 ,  the subscript s denotes the plane Z = i and the subscript 
0 denotes the plane T = ro. 
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r ,  
1.0 1.5 2.0 

I 

300 - 

407 

0 2 
L 

4 6 8 10 I ?  14 

FIGURE 2. Vortex length L and separation point r,  as a function of Reynolds number. 
Tho dotted curve is the separation point predicted by Higgins (197.5). 

Transverse pressure distributions were also computed for the region near the plate 
leading edge (7 = 0) using the equation 

Equations (6.3) and (6.4) are exact. The integrals were evaluated using Simpson's rule. 

7. Computed results and discussion 
The adequacy of the downstream computational boundary rm was tested for 

Reynolds numbers of 30 and 100 by increasing the.value of rm from 20 to  40 and 42-55 
respectively. This gave no significant change in the computed results. Figures 1 ( a )  
and (b) show streamline plots for Re = 100 and 200 for case 11, i.e. with upstream 
diffusion of vorticity permitted. The rapid increase in bubble size with Reynolds 
number is evident and is also shown in figure 2 ,  where the vortex length and the 
separation point rs are plotted as functions of Re. The separation point is defined here 
as the point at which the vorticity changes sign. Figure 2 suggests Re = 64 as the 
critical Reynolds number for separation to occur, a value much lower than that 
proposed by Ishizawa (1966) (Re = 100). The vortex depicted in figure l ( b )  differs 
substantially from that found by Ishizawa (1966). The discrepancies may be due in 
part to the convergence problems for Ishizawa's series solution. Also shown in figure 2 
is the separation point predicted by Higgins (1975). The divergence of this prediction 
from that of the present study may arise from approximat,ions near the leading edge 
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0.2 - 

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 
r! 

FIGURE 3. Lines of constant vorticity for flow at 
(a)  Re = 30 and ( b )  Re = 300; case 11. 

in the boundary-layer and inviscid-core regions of the Higgins model. The computa- 
tions were insensitive to  the position ro of the upstream computational boundary 
provided that r,, was sufficiently small. A reduction in ro from 0.667 to 0-544 for 
Re = 100, for example, did not change the stream-function or the vorticity distribu- 
tions. It is interesting to note that when the more restrictive boundary condition (3.1) 
was used (i.e. uniform approach flow with zero vorticity at 7 = 0, case I) vortex 
formation was found for Re = 60. 

The lines of constant vorticity in figures 3(a) and ( b )  illustrate the significant, 
vorticity diffusion upstream in the region of low velocity and its convertion down- 
stream further from the surface. 
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FIGURE 4. Profiles of radial velocity U for Re = 100. 

0 

'I 

FIGURE 5. Profiles of transverse velocity V as EL function of radial 
distance, at various fluid planes Z for Re = 100. 
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,- Davis ( 1967) 

-- -_ Van de Vooren & Dijkstra (1970) 
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Re, 

FIGURE 6. Local drag-coefficient product as a function of local Reynolds 
number, computed from the solution for Re = 100. 

r 

1.0 
1-303 
1.387 
1.483 
1.794 

- V  
Q = -  

( 1 - 2 ) 2  

(boundary -layer theory) ( V from numerical solutions) 

Leading edge 
4.98 5.24 
3.45 3.47 
2.48 2.28 

Separation point 

TABLE 2. Comparison of boundary-layer prediction V = - Cy2 with 
solutions for transverse velocity near y = 0 for Re = 100. 

Radial velocity profiles are shown in figure 4 for Re = 100. The non-uniform profile 
upstream of the plate entrance (e.g. at r] = -0.25) and at  the entrance (7 = 0 ) ,  re- 
flecting upstream diffusion of vorticity, may be noted. Although not discernible in 
the diagram, there is a small concavity in the profiles near r] = 0.4 similar to that 
found by Wang & Longwell (1964) for non-radial flow. This phenomenon, usually 
associated with instability, was observed for all Re > 75. The extent of the concavity 
was approximately the same at all Re but its location moved downstream with Re. 
The small region of reverse flow near the wall is evident. 

Transverse velocity profiles are shown in figure 5 for Re = 100. The substantial 
magnitude of the velocity near the wall in the inlet region confirms the inapplicability 
of boundary-layer theory for this Reynolds number. Even at  Re = 300 the transverse 
velocity remains appreciable in the inlet region. Similarly significant transverse 
velocities were found by Wang & Longwell (1964) for flow in the inlet section of 
parallel plates, suggesting a comparison with other solutions in the literature for flow 
near the leading edge of a flat plate. In  figure 6 the product C,.Ref [C,. = local drag 
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r 

FIGURE 7. Comparison of centre-line velocities with the prediction 
of viscous flow and that of Savage (1964). 

41 1 

FIGURE 8. Dimensionless pressure coefficients along the planes 2 = 1 (solid lines) 
and 2 = 0.95 (dashed lines). 
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FIGURE 9. Transverse pressure distributions at various radial 
distances for (a )  Re = 30 and ( b )  Be = 100. 

coefficient, Re, = local Reynolds number = Re(r - I)] is compared with predictions 
from the series-truncation method of Davis (1967) and that of Van de Vooren & 
Dijkstra (1970), who matched Carrier & Lin’s (1948) leading-edge solution with a 
downstream boundary-layer solution. Although the physical situations are not directly 
comparable owing to the radial nature of the flow in the present study, the drag- 
coefficient product approaches a value comparable to those of the literature predictions 
as T,I -+ 0, as expected. 

For a region between the leading edge (7 = 0) and the separation point (7 = yS) 
classical boundary-layer theory gives a valid approximation to the flow near the 
surface. This may be seen from table 2, where the boundary-layer prediction for the 
transverse velocity V = - ey2 (c = f(r) + f(y) near y = 0) is compared with results 
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from the present numerical solution for Re = 100. The two predictions are in close 
agreement near the midpoint between the leading edge and the separation point. 

Centre-line velocities are depicted in figure 7 for several Reynolds numbers. For 
Re > I the profiles depart substantially from the viscous-flow parabolic profile and 
show points of inflexion near the entrance owing to boundary-layer development. The 
equation developed by Savage (1964) is plotted for Re = 30 and his prediction is seen 
to depart substantially from that of the present work in the region of small T. Centre- 
line velocities for case I (no vorticity diffusion upstream) were substantially larger 
than for case 11. 

Pressure coefficients along the plane Z = 1, normalized with respect to the pressure 
Po at r = ro = 0.6667, are shown for Reynolds numbers of 30, 100 and 200 in figure 8. 
A strongly adverse pressure gradient develops along the wall near the inlet even at 
low Re. The surprising absence of separation at, for example, Re = 60 may be attri- 
buted to the modification of the radial surface pressure gradient in the wall region by 
acceleration effects due to the growing boundary layers. As shown in figures 9(a) 
and ( b ) ,  transverse pressure gradients in the wall region become very large at  small 7, 
particularly for low Reynolds numbers, and rapidly decrease downstream. This leads 
to the modified radial pressure distributions shown as dotted lines above the solid 
curves of figure 8 for the plane Z = 0.95, i.e. close to the solid surface. This reduction 
in the adverse radial pressure gradient is presumably sufficient to prevent reverse 
flow in this region for Re < 60. It is evident from figures 9 ( a )  and ( b )  that the external 
pressure profile is not ‘impressed’ on the boundary layer in the entrance region. 
The criterion for separation proposed in Schlichting’s (1960, p. 261) boundary-layer 
approach, 

gave incorrect predictions for the Reynolds numbers studied. 
The experimental pressure profiles published by Moller (1963), Jackson & Symmons 

(1 965) and Morgan & Saunders (1960) were obtained for Re > 19000 and cannot be 
directly compared with those of the present study. 

(T = U, Uz/ (  Ud)2 < 11 (U, = free-stream velocity), 

8. Conclusion 
Steady-state solutions of the full vorticity transport equation have been obtained 

for two different entrance conditions. The appreciable diffusion of vorticity upstream 
found in case I1 confirms that its curtailment in case I is not realistic, particularly 
at low Reynolds numbers. The latter boundary condition should be abandoned in 
similar future computations. 

The excellent stability conferred on the vorticity computations by Allen & South- 
well’s discretization procedure permitted the use of over-relaxation and gave more 
rapid convergence than conventional finite-difference schemes. A much broader trial 
of their procedure than is at  present evident in the literature seems warranted. The 
instabilities experienced with the central-difference discretization procedure could 
arise merely from the numerics of computation (as found, for example, by Van de 
Vooren & Dijkstra (1970) for flow over a flat plate) or may reflect instability in the 
real flow as in flow over a cylinder for Re > 40 (when vortex shedding occurs). The 
observed concavity in the velocity profiles lends credence to the latter speculation. 
Steady-state computations for flows with vortex shedding, if carefully performed, 
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still give results, e.g. drag coefficients, in close agreement with the best experimental 
results. The question of flow stability remains to be answered by experiment or by 
a time-dependent study such as that of Thoman & Szewczyk (1969). 

The author wishes to thank Dr D. J. Van der Merwe for suggesting the problem and 
for helpful suggestions during the course of the work, which was performed at the 
University of the Witwatersrand, Johannesburg, during sabbatical leave in 1975-6. 

Appendix. Finite-difference form of the vorticity transport equation 
Equation (2.5) is arranged in the form 

i.e. ~ + ( 1 - 7 ) 4 ~  = 0, 

with 
K = R e ( l - r )  

Following Allen & Southwell (1955), assuming A ,  K ,  a = constant gives 

while assuming B, A, /3 = constant gives 

a2w aw 
-+A-- -pw = B.  ar2 27 

The solution of (A 2) is w = Hesz + GePZ - A/a ,  (A 4) 
with Sand jc the roots of the homogeneous part of (A 2 ) .  Referring to the mesh points 
shown in figure 10, (A 4) may be written for points B, E and D. Elimination of the 
constants H and C from the three resulting equations produces an expression for the 
remaining constant A in terms of the vorticity at  points B, E and D :  

A ,  = a{(@, ePb - wn) e-8b + w, - w, ebb> 
(1 -ePb) (e--86- 1) 

A similar procedure for (A 3) gives 

fl{(wE esa - wA)  e-ya  + wE - w, e"} 
(1 - eea) (e-ya - 1) BE = , 

with E and y the roots of the homogeneous part of (A 3). In  the above equations a and 
b are the step sizes A7 and A 2  respectively. 
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FIGURE 10 

Substitution of the above expressions for A and B in (A 1) gives, finally, 

W E  C B  = W A  +w,cB + wccc + ODCL) (A 7) 
with C, = ( l - v ) 4 , 8 E e - ~ a / ( l - e " a ) ( e - y a - l ) ,  

C ,  = a,e-ab/ (I  - e f i b )  ( , -&a-  i),  

C D -  - a  E e  fib /( i - e ~ b ) ( e - ~ b - i ) ,  

Cc = (I - eta/( 1 - e") ( e - y a  - I), 

C, = C, efib + CD e-fib + C, eEa + Cc e-Ea. 

The stream-function derivatives appearing in the definitions of K ,  h and ,8 above were 
discretized using central-difference formulae. The roots S and p are given by 

6 =  & [ - K + ( K ~ + ~ C C ) ~ ] ,  p = & [ - K - ( K 2 + & ) a ] .  

Corresponding expressions hold for y and e respectively with h and /3 replacing K 

and a. 
Vorticities were computed from (A 7) and stream-function values were computed 

from (2.6) written in finite-difference form using central differences for all derivatives. 
Surface vorticity. Let S denote the solid surface and S+ 1 the next interior point. 

Expansion of the stream function about the point S yields at any given radial position i 

(A 8) 

For convenience the co-ordinate x ( = 1 - 2) is used. 
No slip requires that U = 0 = a'/ax in (A 8) .  Also, it is easily shown that 

by enforcing U = 0 for all r > 1.0. Substitution of these expressions in (A 8) gives 

@i, s+ l=  '<,s + &B2~i,s  + QB3(au/ax)i,s (A 10) 
( B  = step size AZ). Equation (A 10) is discretized further using a more accurate 
forward-difference formula for awlax ( = - aw/aZ) than that used by Wood (1954) 
in a similar derivation. Substitution of awlax = ( - 3wi,, + - W ? , ~ + ~ ) / ~ B  and 
solving for gives, finally, 

Equation (A 11) is used to compute surface vorticities in the iterative procedure. 
wi,s = 4($i,s+1- 'i,S)lB2--(4~i,~+l-wi,S+2). (A 11) 
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